Phương pháp đạo hàm logarit bằng máy tính là chủ đề các em học sinh cấp 3 quan tâm nhiều nhất. Trong bài viết này, magdalenarybarikova.com sẽ cùng các em ôn lại lý thuyết đạo hàm logarit và hướng dẫn các em cách xử lý bài đạo hàm logarit bằng máy tính cực nhanh.



Đạo hàm logarit bằng máy tính là phương pháp xử lý bài toán đạo hàm nhanh gọn nhất, thích hợp với các dạng bài toán trắc nghiệm trong các đề thi Toán hiện nay. Trước khi vào phần lý thuyết về đạo hàm logarit và cách xử lý đạo hàm logarit bằng máy tính, các em hãy cùng magdalenarybarikova.com nhận định dạng toán này một cách tổng quan nhất trong bảng sau:

*

Các em lưu ý, ngoàiphương pháp casio, chúng mình còn có thể làm bằng phương pháptự luận, vậy nên các em nên linh hoạt trong phương pháp làm bài. Để tiện hơn trong ghi nhớ kiến thức, magdalenarybarikova.com đã tổng hợp lý thuyết về đạo hàm - phương pháp giải đạo hàm logarit bằng máy tính tại file dưới đây, các em nhớ lưu về để học nhé!

File lý thuyết đạo hàm logarit - đạo hàm logarit bằng máy tính siêu chi tiết

Đặc biệt, ở cuối bài viết này sẽ có một file tổng hợp toàn bộ lý thuyết về hàm số luỹ thừa - logarit - hàm mũ với đầy đủ công thức, tính chất và hơn hết là các tips bấm máy tính cực hay. Các em nhớ đọc hết bài viết để lấy bộ tài liệu này nhé!

*

1. Ôn lại lý thuyết về đạo hàm logarit

1.1. Đạo hàm logarit là gì?

Khi xử lý các bài tập tính đạo hàm logarit bằng máy tính, mặc dù nhanh và đi đường tắt hơn nhưng các em vẫn không được bỏ qua bản chất. Cùng magdalenarybarikova.com ôn tập lại định nghĩa về hàm số logarit các em đã được học trong chương trình THPT nhé:

Cho số thực $a>0, $a\neq 1$, hàm số $y=log_ax$ được gọi là hàm số logarit cơ số $a$.

Bạn đang xem: Tìm tập xác định của hàm số logarit bằng máy tính

Tập xác định: Hàm số $y=log_ax$ (0

Tập giá trị: Do $log_ab\in \mathbb{R}$ nên hàm số $y=log_ax$ có tập giá trị là $T=\mathbb{R}$

Xét các trường hợp:

Xét trường hợp hàm số $y=log_a$ điều kiện $P(x)>0$. Nếu $a$ chứa biến $x$ thì ta bổ sung điều kiện $0

Xét trường hợp đặc biệt: $y=log_a^n$ điều kiện $P(x)>0$ nếu n lẻ; $P(x)\neq 0$ nếu $n$ chẵn.

Đồ thị:

*

Đồ thị hàm số có tiệm cận đứng là trục $Oy$ và luôn đi qua các điểm $(1;0)$ và nằm phía bên phải trục tung.

Đồ thị nhận trục tung là tiệm cận đứng.

1.2. Công thức đạo hàm logarit

Khi xử lý đạo hàm logarit bằng máy tính, các em cần phải nắm vững bản chất của công thức đạo hàm logarit chính thống. Đạo hàm logarit có công thức như sau:

Cho hàm số $y=log_ax$. Khi đó đạo hàm hàm logarit trên là:

*

Trường hợp tổng quát hơn, cho hàm số $y=log_au(x)$. Đạo hàm là:

*

Đầy đủ hơn, các em tham khảo bảng công thức đạo hàm logarit dưới đây:

*

1.3. Các tính chất

Tính chất của hàm số logarit giúp chúng ta xác định được chiều biến thiên và nhận dạng đồ thị dễ hơn. Với hàm số $y=log_ax\Rightarrow y"=\frac{1}{xlna}(\forall x\in (0;+\infty ))$. Do đó:

Với $a>1$ ta có $(log_ax)"=\frac{1}{xlna}>0\Rightarrow $ Hàm số luôn đồng biến trên khoảng $(0;+\infty )$.Trong trường hợp này ta có: $\lim_{x\rightarrow 0^+}y=-\infty$do đó đồ thị nhận trục tung là tiệm cận đứng.

Với $0

2. Cách tính đạo hàm logarit bằng máy tính

2.1. Tổng quan các bước tiến hành

Tính đạo hàm logarit bằng máy tính là kỹ năng cần thiết áp dụng hiệu quả trong đề thi THPT quốc gia. Khi tiến hành thực hiện, các em cần nắm vững 3 bước sau đây:

Cho hàm số $y=f(x)$. Tính đạo hàm logarit bằng máy tính:

Bước 1: Chọn $x=x_0$ bất kỳ thuộc tập xác định

Bước 2: Tính đạo hàm của hàm số $y=f(x)$ tại $x=x_0$ và ghi lại kết quả.

Bước 3: Thay $x=x_0$vào các đáp án A, B, C và D và so sánh với kết quả vừa tính được ở bước 2.

2.2. Ví dụ minh hoạ cách đạo hàm logarit bằng máy tính

Chúng ta cùng xem xét ví dụ minh hoạ dưới đây để hiểu rõ các bước làm 1 bài tập đạo hàm logarit bằng máy tính trên thực tế. Các em lưu ý rằng, trước khi tiến hành bấm máy, chúng ta cần tìm tập xác định của đạo hàm trước, và giá trị $x$ khi chọn để thay và thử cũng phải thuộc tập xác định đã tìm trên.

Xem thêm: Tính Khoảng Cách Giữa 2 Đường Thẳng Bằng Phương Pháp Tọa Độ, Khoảng Cách Giữa Hai Đường Thẳng Chéo Nhau

Ví dụ minh hoạ:

*

Giải:

Bước 1: Chọn $x=2$ thuộc tập xác định của hàm số $f(x)$ thay vào biểu thức sau:

*

Bước 2: Tính đạo hàm của hàm số $f(x)$ trên tại $x=2$. Bấm máy tính ta ra được kết quả:

*

Bước 3: Thay giá trị $x=2$ vào từng đáp án A, B, C và D và so sánh với kết quả vừa tính được ở bước 2:

Thay $x=2$ vào đáp án A:

*
=> Loại

Thay $x=2$ vào đáp án B:

*
=> Chọn

Ta làm tương tự với 2 đáp án còn lại nếu chưa chắc chắn. Sau khi thay, ta ra được kết quả đúng là đáp án B.

3. Bài tập áp dụng đạo hàm logarit bằng máy tính

Để luyện tập thành thạo phương pháp đạo hàm logarit bằng máy tính cũng như tăng tốc độ giải dạng bài tập này, magdalenarybarikova.com gửi tặng các em bộ tài liệu bài tập đạo hàm logarit bằng máy tính có hướng dẫn giải chi tiết bằng phương pháp tự luận để các em bấm máy rồi so sánh kết quả. Đây là các câu hỏi bài tập được chọn lọc sao cho gần với các bài kiểm tra và các đề thi nhất, nên các em nhớ tải về để ôn tập nhé!

Tải xuống file bài tập đạo hàm logarit bằng máy tính kèm giải chi tiết

Ngoài ra, như ở đầu bài viết đã hứa, magdalenarybarikova.com tặng thêm cho em một file tài liệu ôn tập hàm số luỹ thừa- logarit và mũ đặc biệt chỉ có ở magdalenarybarikova.com. Mong rằng bộ tài liệu này sẽ rút ngắn được thời gian ôn tập cho các em đồng thời mang lại hiệu quả trong quá trình ôn nhé!

Tải xuống file tài liệu lý thuyết hàm số logarit - đạo hàm logarit bằng máy tính phiên bản đặc biệt

magdalenarybarikova.com đã cùng em ôn tập lại lý thuyết về đạo hàm hàm số logarit và hướng dẫn em cách đạo hàm logarit bằng máy tính siêu nhanh siêu dễ. Chúc em học tốt và luôn đạt điểm cao!