Hướng dẫn giải bài xích §2. Phương trình lượng giác cơ bản, Chương I. Hàm con số giác và phương trình lượng giác, sách giáo khoa Đại số và Giải tích 11. Nội dung bài bác giải bài bác 1 2 3 4 5 6 7 trang 28 29 sgk Đại số cùng Giải tích 11 bao gồm tổng thích hợp công thức, lý thuyết, cách thức giải bài bác tập đại số và giải tích tất cả trong SGK để giúp các em học sinh học giỏi môn toán lớp 11.

Bạn đang xem: Giải toán đại 11 trang 28

Lý thuyết

1. Phương trình $sinx = a$

*

Nếu (|a|>1): Phương trình vô nghiệm.

Nếu (|a|leq 1):

(sin x = sin alpha Leftrightarrow left< eginarrayl x = alpha + k2pi \ x = pi – alpha + k2pi endarray ight.left( k in mathbbZ ight))

(sin x = sin eta ^0 Leftrightarrow left< eginarrayl x = eta ^0 + k360^0\ x = 180^0 – eta ^0 + k360^0 endarray ight.left( k inmathbbZ ight))

(sin x = a Leftrightarrow left< eginarrayl x = arcsin a + k2pi \ x = pi – arcsin a + k2pi endarray ight.left( k in mathbbZ ight))​

Tổng quát:

(sin fleft( x ight) = sin gleft( x ight) Leftrightarrow left< eginarrayl fleft( x ight) = gleft( x ight) + k2pi \ fleft( x ight) = pi – gleft( x ight) + k2pi endarray ight.,,left( k inmathbbZ ight))

Các ngôi trường hợp quánh biệt:

(eginarrayl oplus ,,,sin x = 1 Leftrightarrow x = fracpi 2 + k2pi ,,,left( k in mathbbZ ight)\ oplus ,,,sin x = – 1 Leftrightarrow x = – fracpi 2 + k2pi ,,,left( k inmathbbZ ight)\ oplus ,,,sin x = 0 Leftrightarrow x = kpi ,,,left( k inmathbbZ ight) endarray)

2. Phương trình $cosx = a$

*

Nếu (|a|>1): Phương trình vô nghiệm.

Nếu (|a|leq 1):

(cos x = cos alpha Leftrightarrow x = pm alpha + k2pi left( k inmathbbZ ight))

(cos x = cos eta ^0 Leftrightarrow x = pm eta ^0 + k360^0left( k in mathbbZ ight))

(cos x = a Leftrightarrow x = pm ,arcc mosa + k2pi left( k in mathbbZ ight))

Tổng quát:

(cos fleft( x ight) =cos gleft( x ight) Leftrightarrow fleft( x ight) = pm gleft( x ight) + k2pi ,,left( k in mathbbZ ight))

Các ngôi trường hợp quánh biệt:

(eginarrayl oplus ,,,cos x = 1 Leftrightarrow x = k2pi ,,,left( k inmathbbZ ight)\ oplus ,,,cos x = – 1 Leftrightarrow x = pi + k2pi ,,,left( k inmathbbZ ight)\ oplus ,,,cos x = 0 Leftrightarrow x = fracpi 2 + kpi ,,,left( k in mathbbZ ight) endarray)

3. Phương trình $tanx = a$

*

(eginarrayl oplus an x = mathop m t olimits manalpha Leftrightarrow ,x, m = ,alpha + kpi ,,,,left( k inmathbbZ ight)\ oplus an x = mathop m t olimits maneta ^0 Leftrightarrow ,x m = eta ^0 + k m18 m0^0,,,,left( k in mathbbZ ight)\ oplus an x = a Leftrightarrow x m = arctan a, + kpi ,,,,left( k inmathbbZ ight) endarray)

Tổng quát:

( an fleft( x ight) = an gleft( x ight) Leftrightarrow fleft( x ight) = gleft( x ight) + kpi ,,left( k in mathbbZ ight))

4. Phương trình $cotx = a$

*

(eginarrayl oplus cot x = cot alpha Leftrightarrow mx,, m = ,alpha , m + , mkpi ,,,,left( k in mathbbZ ight)\ oplus cot x = cot eta ^0 Leftrightarrow mx,, m = ,eta ^0 m + , mk18 m0^0,,,,left( k inmathbbZ ight)\ oplus cot x = a Leftrightarrow mx,, m = mathop m arc olimits cot ,a, m + , mkpi ,,,,left( k inmathbbZ ight) endarray)

Tổng quát:

(cot fleft( x ight) = cot gleft( x ight) Leftrightarrow fleft( x ight) = gleft( x ight) + kpi ,,left( k in mathbbZ ight))

Dưới đấy là phần phía dẫn vấn đáp các câu hỏi và bài bác tập vào phần hoạt động vui chơi của học sinh sgk Đại số cùng Giải tích 11.

Câu hỏi

1. Trả lời câu hỏi 1 trang 18 sgk Đại số và Giải tích 11

Tìm một giá trị của $x$ làm thế nào để cho $2sinx – 1 = 0.$

Trả lời:

Ta có: $2sinx – 1 = 0 ⇒ sin x =$ (1 over 2)

⇒ một cực hiếm của $x$ thế nào cho $2sinx – 1 = 0$ là $x =$ (pi over 6)

2. Trả lời câu hỏi 2 trang 19 sgk Đại số cùng Giải tích 11

Có giá trị nào của $x$ thỏa mãn phương trình $sinx = -2$ không?

Trả lời:

Không có mức giá trị làm sao của $x$ thỏa mãn nhu cầu phương trình $sinx = -2$

3. Trả lời thắc mắc 3 trang 21 sgk Đại số cùng Giải tích 11

Giải các phương trình sau:

(eqalign& a),mathop m s olimits minx = 1 over 3 cr& b),sin (x + 45^0) = – sqrt 2 over 2 cr )

Trả lời:

a) Ta có:

$sin⁡x =$ (1 over 3) khi x = arcsin (1 over 3)

Vậy phương trình $sin⁡x =$ (1 over 3) có những nghiệm là:

$x = arcsin$ (1 over 3) $+ k2π, k ∈ Z$ và $x = π – arcsin$ (1 over 3) $+ k2π, k ∈ Z$

b) Ta có: ( – sqrt 2 over 2) = sin⁡(-45o) nên:

sin⁡(x + 45o ) = ( – sqrt 2 over 2) ⇔ sin⁡(x+45o) = sin⁡(-45o)

Khi kia x + 45o = -45o + k360o, $k ∈ Z ⇒ x =$ -45o – 45o + k360o, $k ∈ Z$

và x + 45o = 180o – (-45o ) + k360o, $k ∈ Z ⇒ x =$ 180o – (-45o ) – 45o + k360o, $k ∈ Z$

Vậy: $x =$ -90o + k360o, $k ∈ Z$ với $x =$ 180o + k360o, $k ∈ Z$

4. Trả lời câu hỏi 4 trang 23 sgk Đại số và Giải tích 11

Giải những phương trình sau:

(eqalign& a),cos x = – 1 over 2 cr& b),cos x = 2 over 3 cr& c),cos (x + 30^0) = sqrt 3 over 2 cr )

Trả lời:

a) Ta có:

( – 1 over 2) = cos (2pi over 3) phải cos ⁡x = ( – 1 over 2) ⇔ cos ⁡x = cos (2pi over 3)

$⇒ x = ± 2pi over 3 + k2π, k ∈ Z$

b) Ta có:

$cos ⁡x = 2 over 3$

$⇒ x = ± arccos 2 over 3 + k2π, k ∈ Z$

c) Ta có:

(sqrt 3 over 2) = cos30o buộc phải cos⁡(x + 30o )= (sqrt 3 over 2)

$⇔ cos⁡(x +$ 30o ) =$ cos$ 30o

⇔ x + 30o = ±30o + k360o, $k ∈ Z$

⇔ x = k360o, k ∈ Z và x = -60o + k360o, k ∈ Z

5. Trả lời thắc mắc 5 trang 24 sgk Đại số với Giải tích 11

Giải những phương trình sau:

a) $tanx = 1$;

b) $tanx = -1$;

c) $tanx = 0$.

Trả lời:

Ta có:

a) $tan⁡ x = 1 ⇔ tan⁡ x = tan⁡ pi over 4$

$⇔ x = pi over 4 + kπ, k ∈ Z$

b) $tan⁡ x = -1 ⇔ tan⁡ x = tan⁡ – pi over 4 $

$⇔ x = – pi over 4 + kπ, k ∈ Z$

c) $tan⁡ x = 0 ⇔ tan⁡ x = tan⁡ 0$

$⇔ x = kπ, k ∈ Z$

6. Trả lời câu hỏi 6 trang 26 sgk Đại số cùng Giải tích 11

Giải các phương trình sau:

a) $cotx = 1$;

b) $cotx = -1$;

c) $cotx = 0$.

Trả lời:

Ta có:

a) $cot⁡ x = 1 ⇔ cot⁡ x = cot⁡ pi over 4$

$⇔ x = pi over 4 + kπ, k ∈ Z$

b) $cot⁡ x = -1 ⇔ cot⁡ x = cot⁡ – pi over 4$

$⇔ x = – pi over 4 + kπ,k ∈ Z$

c) $cot⁡ x = 0 ⇔ cot⁡ x = cot⁡ pi over 2$

$⇔ x = pi over 2 + kπ, k ∈ Z$

Dưới đấy là phần chỉ dẫn giải bài bác 1 2 3 4 5 6 7 trang 28 29 sgk Đại số với Giải tích 11. Các bạn hãy phát âm kỹ đầu bài trước lúc giải nhé!

Bài tập

magdalenarybarikova.com reviews với các bạn đầy đủ phương pháp giải bài bác tập đại số và giải tích 11 kèm bài giải bỏ ra tiết bài 1 2 3 4 5 6 7 trang 28 29 sgk Đại số cùng Giải tích 11 của bài §2. Phương trình lượng giác cơ phiên bản trong Chương I. Hàm số lượng giác với phương trình lượng giác cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài bác tập các bạn xem dưới đây:

*
Giải bài xích 1 2 3 4 5 6 7 trang 28 29 sgk Đại số và Giải tích 11

1. Giải bài 1 trang 28 sgk Đại số cùng Giải tích 11

Giải các phương trình sau:

a) (small sin (x + 2) =frac13)

b) (small sin 3x = 1)

c) (small sin (frac2x3 -fracpi3) =0)

d) (small sin (2x + 20^0) =-fracsqrt32)

Bài giải:

a) (sin (x + 2) =frac13Leftrightarrow Bigg lbrackeginmatrix x+2=arcsin frac13+k2 pi, k in mathbbZ\ \ x+2=pi -arcsin frac13+k2 pi, k in mathbbZ endmatrix)

(Leftrightarrow Bigg lbrackeginmatrix x=arcsin frac13-2+k2 pi, kin mathbbZ\ \ x=pi – arcsin frac13-2+k2 pi, kin mathbbZ endmatrix)

Vậy nghiệm của phương trình là: (x=arcsin frac13-2+k2 pi (kin mathbbZ)) và (x=pi – arcsin frac13-2+k2 pi (kin mathbbZ))

b) (sin 3x = 1 Leftrightarrow sin3x=sinfracpi 2)

(Leftrightarrow 3x=fracpi 2+k2 pi ,kin mathbbZ)

(Leftrightarrow x=fracpi 6+frack2 pi3,(kin mathbbZ))

Vậy nghiệm của phương trình là: (x=fracpi 6+frack2 pi3,(kin mathbbZ))

c) (sinleft ( frac2x3-fracpi 3 ight )=0 Leftrightarrow frac2x3-fracpi 3= kpi, kin mathbbZ)

(Leftrightarrow frac2pi 3=fracpi 3+k pi,kin mathbbZ)

(Leftrightarrow x=fracpi 2+frac3kpi 2, kin Z)

Vậy nghiệm của phương trình là: (x=fracpi 2+k.frac3pi 2, kin Z)

d) (sin(2x+20^0)=-fracsqrt32Leftrightarrow sin (2x +20^0) = sin(-60^0))

(Leftrightarrow Bigg lbrackeginmatrix 2x+20^0=-60^0+k360^0, kin mathbbZ\ \ 2x+20^0=204^0+k360^0, kin mathbbZ endmatrix)

(Leftrightarrow Bigg lbrackeginmatrix x=-40^0+k180^0, kin mathbbZ\ \ x=110^0+k180^0, kin mathbbZ endmatrix)

Vậy nghiệm của phương trình là: (x=-40^0+k180^0, (kin mathbbZ); x=110^0+k180^0, (kin mathbbZ))

2. Giải bài 2 trang 28 sgk Đại số với Giải tích 11

Với đầy đủ giá trị như thế nào của x thì giá chỉ trị của các hàm số $y = sin 3x$ với $y = sin x$ bởi nhau?

Bài giải:

Giá trị của các hàm (y=sin3x) cùng (y=sinx) cân nhau khi và chỉ còn khi:

(sin3x=sinxLeftrightarrow Bigg lbrackeginmatrix 3x=x+k2pi, (kin mathbbZ)\ \ 3x= pi-x+k2 pi, (kin mathbbZ) endmatrix)

(Leftrightarrow Bigg lbrack eginmatrix x=kpi , (kin mathbbZ)\ \ x=fracpi 4+kfracpi 2 , (kin mathbbZ) endmatrix)

Vậy với (x=kpi , (kin mathbbZ)) hoặc (x=fracpi 4+kfracpi 2 , (kin mathbbZ)) thì sin3x = sinx.

3. Giải bài xích 3 trang 28 sgk Đại số và Giải tích 11

Giải những phương trình sau:

a) (small cos (x – 1) =frac23)

b) (small cos 3x = cos 12^0)

c) (small cos (frac3x2-fracpi4)=-frac12)

d) (cos ^22x = frac14).

Bài giải:

a) Ta có:

(cos (x – 1) = frac23 Leftrightarrow Bigg lbrackeginmatrix x – 1 = arccos frac23 + k2pi\ \ x – 1 = – arccos frac23 + k2pi endmatrix)

(Leftrightarrow Bigg lbrackeginmatrix x = 1 + arccos frac23 + k2pi , (k in Z) \ \ x = 1 – arccos frac23 + k2pi , (k in Z). endmatrix)

Vậy nghiệm phương trình là: (x = 1 + arccos frac23 + k2pi , (k in Z)) hoặc (x = 1 – arccos frac23 + k2pi , (k in Z).)

b) (cos 3x = cos 120^0Leftrightarrow 3x = pm 12^0 + k360^0 (kin mathbbZ))

(Leftrightarrow x = pm 4^0 + k120^0 , (k in Z).)

Vậy nghiệm phương trình là: (x = pm 4^0 + k120^0 , (k in Z).)

c) Ta có:

(cosleft ( frac3x2-fracpi 4 ight )=-frac12Leftrightarrow cosleft ( frac3x2-fracpi 4 ight )=cosleft ( pi -fracpi 3 ight ))

(Leftrightarrow Bigg lbrackeginmatrix frac3x2-fracpi 4=frac2pi 3+k2 pi\ \ frac3x2-fracpi 4=-frac2pi 3+k2 pi endmatrix,(kin mathbbZ))

(Leftrightarrow Bigg lbrackeginmatrix x=frac11pi 18+k.frac4pi 3 \ \ x=-frac5pi18+k.frac4pi 3 endmatrix,(kin mathbbZ))

Vậy nghiệm phương trình là: (x=frac11pi 18+frac4 kpi 3) và (x=-frac5pi18+frac4 kpi 3 (kin mathbbZ))

d) Ta có:

(cos^22x =frac14Leftrightarrow Bigg lbrackeginmatrix cos2x=frac12\ \ cos2x=-frac12 endmatrixLeftrightarrow Bigg lbrackeginmatrix cos2x=cos fracpi 3\ \ cos2x= cosfrac2pi 3 endmatrix)

(Leftrightarrow Bigg lbrackeginmatrix 2x=pm fracpi 3 + k2 pi\ \ 2x=pm frac2pi 3 + k2 pi endmatrix, kin mathbbZ Leftrightarrow Bigg lbrackeginmatrix x= pm fracpi 6 +k pi\ \ x= pm fracpi 3 +k pi endmatrix, kin mathbbZ)

Vậy nghiệm phương trình là: (x= pm fracpi 6 +k pi)và (x= pm fracpi 3 +k pi, kin mathbbZ).

4. Giải bài bác 4 trang 29 sgk Đại số và Giải tích 11

Giải phương trình (small frac2cos2x1-sin2x=0).

Bài giải:

Điều khiếu nại (sin2x eq 1Leftrightarrow 2x eq fracpi 2+k2 piLeftrightarrow x eq fracpi 4+k pi(kin mathbbZ))

(frac2cos2x1-sin2x=0Leftrightarrow 2cos2x=0)

Phương trình sẽ cho tương đương với:

(cos2x=0 Leftrightarrow Bigg lbrackeginmatrix 2x=fracpi 2+k2pi\ \ 2x=-fracpi 2+k2pi endmatrix Leftrightarrow Bigg lbrackeginmatrix x=fracpi 4+kpi (loai)\ \ x=-fracpi 4+kpi (kin mathbbZ) endmatrix)

Vậy nghiệm phương trình là: (x=-fracpi 4+kpi (kin mathbbZ)).

5. Giải bài 5 trang 29 sgk Đại số với Giải tích 11

Giải những phương trình sau:

a) (small tung (x – 150) = fracsqrt33);

b) (small cot (3x – 1) = -sqrt3);

c) (small cos 2x . Rã x = 0);

d) (small sin 3x . Cot x = 0).

Bài giải:

a) Điều khiếu nại (x – 15^0 eq 90^0+k180^0) tuyệt (x eq 105^0+k.180^0.)

(tan (x – 15^0) = fracsqrt33Leftrightarrow tan(x-15^0)=tan30^0), với điều kiện:

Ta tất cả phương trình (tan (x – 15^0) = tan30^0)

(Leftrightarrow x – 15^0 = 30^0 + k180^0 , (k in mathbbZ).)

(Leftrightarrow x = 45^0 + k180^0 , (k in mathbbZ).) (thoả điều kiện)

Vậy nghiệm của phương trình là: (x = 45^0 + k180^0 , (k in mathbbZ).)

b) (cot (3x – 1) = -sqrt3), với đk (3x-1 eq kpi (kin mathbbZ)) giỏi (x eq frac1+k pi3(kin mathbbZ))

Ta tất cả phương trình (cot (3x – 1) = cot(-fracpi 6))

(Leftrightarrow 3x-1=-frac5pi 6+k pi, kin mathbbZ)

(Leftrightarrow x=frac13-fracpi 18+k.fracpi 3,(kin mathbbZ)) (thoả điều kiện)

Vậy nghiệm phương trình là (x=frac13-fracpi 18+k.fracpi 3,(kin mathbbZ))

c) (cos2x.tanx=0 Leftrightarrow cos 2x.fracsin xcos x = 0), với điều kiện (cosx eq 0)

(Leftrightarrow x eq fracpi 2+kpi (kin mathbbZ)), ta bao gồm phương trình: (cos2x . Sinx = 0)

(Leftrightarrow igg lbrackeginmatrix cos2x=0\ sin2x=0 endmatrixLeftrightarrow igg lbrackeginmatrix 2x=fracpi 2+kpi \ x=kpi endmatrix(kin mathbbZ))

(Leftrightarrow igg lbrackeginmatrix x=fracpi 4+k.fracpi 2\ x=k pi endmatrix(kin mathbbZ)) (thoả điều kiện)

Vậy nghiệm phương trình là: (x=fracpi 4+k.fracpi 2(kin mathbbZ)) hoặc (x=kpi (kin mathbbZ))

d) (sin 3x . Cot x = 0 Leftrightarrow sin 3x.fraccos xsin x = 0), với điều kiện (sinx eq 0Leftrightarrow x eq k.2pi (kin mathbbZ))

Ta bao gồm phương trình sin3x.cos = 0

(Leftrightarrow igg lbrackeginmatrix sin3x=0\ cosx=0 endmatrixLeftrightarrow igg lbrackeginmatrix 3x=k2pi\ x=fracpi 2+kpi endmatrix (kin mathbbZ))

(Leftrightarrow Bigg lbrackeginmatrix x=frack2 pi3\ \ x=fracpi 2+k pi endmatrix(k in mathbbZ))

So sánh với đk ta thấy lúc (k = 3m,m in mathbbZ) thì (x = 2mpi Rightarrow sin x = 0) không thỏa điều kiện.

Vậy phương trình tất cả nghiệm là: (x=frack2 pi3) cùng (x=fracpi 2+k pi (k eq 3m, min mathbbZ))

6. Giải bài 6 trang 29 sgk Đại số và Giải tích 11

Với rất nhiều giá trị nào của x thì giá chỉ trị của các hàm số (small y = tan ( fracpi4- x)) và (small y = tan2x) bằng nhau?

Bài giải:

Giá trị của những hàm số: (tanleft ( fracpi 4-x ight )) và (y=tan 2x) cân nhau khi và chỉ khi:

(eginarrayl,,,,, an left( fracpi 4 – x ight) = an 2x\DK:,,left{ eginarraylfracpi 4 – x e fracpi 2 + mpi \2x e fracpi 2 + mpiendarray ight. Leftrightarrow left< eginarraylx e – fracpi 4 + mpi \x e fracpi 4 + fracmpi 2endarray ight.\Leftrightarrow x e fracpi 4 + fracmpi 2,,left( m in Z ight)endarray)

Khi đó phương trình tương tự với:

(eginarrayl,,,,,,,2x = fracpi 4 – x + kpi \Leftrightarrow 3x = fracpi 4 + kpi \Leftrightarrow x = fracpi 12 + frackpi 3,,,left( k in Z ight)endarray)

Kết hợp đk ta có:

(eginarrayl,,,,,,fracpi 12 + frackpi 3 e fracpi 4 + fracmpi 2\Leftrightarrow frackpi 3 e fracmpi 2 + fracpi 6\Leftrightarrow k e frac3m + 12,,,left( k,m in Z ight)endarray)

Vậy phương trình tất cả nghiệm: (x = fracpi 12 + frackpi 3,,,left( k e frac3m + 12,,,left( k,m in Z ight) ight))

7. Giải bài bác 7 trang 29 sgk Đại số với Giải tích 11

Giải những phương trình sau:

a) (sin 3x – cos 5x = 0);

b) (small rã 3x . Tan x = 1).

Xem thêm: De Thi Tham Khảo Thpt Quốc Gia 2020, Đề Tham Khảo Thi Tốt Nghiệp Thpt 2020

Bài giải:

a) (sin 3x – cos 5x = 0 Leftrightarrow cos 5x = sin 3x)

(Leftrightarrow cos 5x = cos (fracpi 2 – 3x))

(Rightarrow Bigg lbrackeginmatrix 5x= fracpi 2-3x+k2 pi \ \ 5x =- fracpi 2+3x +k2 pi endmatrix (kin mathbbZ))

(Leftrightarrow Bigg lbrackeginmatrix x=fracpi 16+frackpi 4 \ \ x=-fracpi 4 +kpi endmatrix, (kin Z))

Vậy nghiệm phương trình là: (x=fracpi 16+frackpi 4 (kin Z)) và (x=-fracpi 4 +kpi, (kin mathbbZ))

b) (tan 3x . Tan x = 1)

Điều kiện: (left{eginmatrix cos3x eq 0\ \ cosx eq 0 endmatrix ight.Leftrightarrow left{eginmatrix x eq fracpi 6+k.fracpi 3\ \ x eq fracpi 2 +k.pi endmatrix ight. (kin mathbbZ))

(tan3x.tanx=1Rightarrow tan3x=frac1tanxRightarrow tan3x=cotx)

(Rightarrow tan3x=tanleft ( fracpi 2-x ight ))

(Rightarrow 3x=fracpi 2-x+k pi(kin mathbbZ))

(Rightarrow x=fracpi 8+frack pi 4, k in mathbbZ) (thoả điều kiện)

Vậy nghiệm phương trình là (x=fracpi 8+frack pi 4, k in mathbbZ).

Bài trước:

Bài tiếp theo:

Chúc các bạn làm bài tốt cùng giải bài xích tập sgk toán lớp 11 với giải bài bác 1 2 3 4 5 6 7 trang 28 29 sgk Đại số và Giải tích 11!