Nguyên hàm lượng giác là phần kiến thức quan trọng trong chương trình toán THPT. Trong đó, các công thức nguyên hàm lượng giác khá phức tạp. Vì vậy, để làm bài tập thì các em cần ghi nhớ và biết cách vận dụng công thức. Cùng magdalenarybarikova.com điểm lại các công thức và bài tập nguyên hàm lượng giác qua bài viết sau đây.
1. Bảng công thức tính nguyên hàm lượng giác đầy đủ nhất
Bảng công thức nguyên hàm của hàm số lượng giác là kiến thức vô cùng quan trọng khi học chương trình toán 12, đặc biệt trong phần giải tích. Dưới đây là toàn bộ những công thức nguyên hàm lượng giác cơ bản nhất được các em áp dụng nhiều trong quá trình làm bài tập.
Bạn đang xem: Công thức nguyên hàm lượng giác
2. Các dạng nguyên hàm lượng giác cơ bản
Dạng 1: Nguyên hàm của $I = sin^{m}xcos^{n}xdx$
Trường hợp 1: Nếu m = 2k + 1 $\Rightarrow I = \int sin^{2k}xcos^{n}x.sinxdx$
$= - \int (1-cos^{2}x)^{k} . cos^{n}xd (cosx) \Rightarrow$ Đặt $t = cosx$
Trường hợp 2: Nếu n = 2k+1 $\Rightarrow$ Đặt $t = sinx$
Trường hợp 3: Nếu m,n đều chẵn ta dùng công thức hạ bậc
Lưu ý: Đối với nguyên hàm chỉ chứa sinx và cosx dạng.
I = ∫f(sinx) cosxdx = ∫f(sinx)d(sinx) → Đặt t = sinx
I = ∫f(cosx) sinxdx = −∫f(cosx) d(cosx) → Đặt t = cosx
Dạng 2: Nguyên hàm $I= \int \frac{dx}{sin^{m}x.cos^{n}x} = \frac{sin^{2}x.cos^{n}x}{sin^{m}x.cos^{n}x} ....$
Trường hợp 1:
Nếu m= 2k+ 1 $I= \int \frac{sinxdx}{sin^{2k+2}x}.cos^{n}x = - \int \frac{d(cosx)}{(1 - cos^{2}x)^{k+1}} . cos^{n}x$
Khi đó ta đặt: $t= cosx$
Trường hợp 2: Nếu n= 2k+ 1 → Đặt $t= sinx$
Trường hợp 3: Nếu m,n đều chẵn ta có: $\frac{dx}{sin^{m}x} . cos^{n}x = \frac{sin^{2}x.cos^{n}x}{sin^{m}x.cos^{n}x}$
Dạng 3: Nguyên hàm lượng giác của hàm tanx và cotx
Các nguyên hàm chứa $tanx$ hay $cotx$ ta thường dùng các hằng đẳng thức
$\frac{1}{sin^{2}x} = 1+ cos^{2}x ; \frac{1}{cos^{2}x = 1+tan^{2}}x$
Nguyên hàm mà mẫu là đẳng cấp bậc 2 với $sinx$và $cotx$
$Asin^{2}x + Bsinx.cosx + Ccos^{2}x$ thì ta chia cả tử và mẫu cho $cos^{2}x$
Dạng 4:Nguyên hàm sử dụng công thức biến đổi tích thành tổng
$\int cosax . cosbxdx = \frac{1}{2}\int
$\int sinax . sinbxdx = \frac{-1}{2}$
$\int
$\int sinax.cosbxdx= \frac{1}{2} \int
$\int cosax.sinbxdx = \frac{1}{2} \int
Ta có: $\int \frac{dx}{msin^{2}\frac{x}{2}+nsin\frac{x}{2}cos\frac{x}{2}+pcos^{x}\frac{x}{2}} = \int \frac{dx}{cos^{2}\frac{x}{2}(mtan^{2}\frac{x}{2}+ntan\frac{x}{2}+p)} \overset{t=tan\frac{x}{2}}{\rightarrow} I= \int \frac{dt}{mt^{2}+nt+p}$3. Một số bài tập nguyên hàm lượng giác và phương pháp giải
Câu 1: Nguyên hàm của hàm số: y = 7sinx?
A. 7sinx + C.
B. 7cosx + C.
C. –7cosx + C.
D. Tất cả sai.
Giải
Ta có: ∫7sinx dx = 7∫sinx dx = -7cosx + C.
Chọn C.
Câu 2: Nguyên hàm của hàm số: y = 6sinx + 8cosx là:
A. –6cosx - 8sinx + C.
B. 6cosx + 8sinx + C.
C. –6cosx + 8sinx + C.
D. 6cosx - 8sinx + C
Giải
Ta có:
∫(6sinx + 8cosx)dx = 6∫sinx dx + 8∫cosx dx = -6cosx + 8sinx + C.
Chọn C.
Câu 3: Tìm nguyên hàm của hàm số y = 8sinx - 8cosx
A. 8cosx - 8sinx.
B. -8cosx - 8sinx.
C. 8cosx + 8sinx.
D. Tất cả sai.
Giải
Ta có: ∫(8sinx - 8cosx)dx = 8∫sinx dx - 8∫cosx dx = -8cosx – 8sinx
Chọn B.
Câu 4: Tính: I = ∫sin(x2 - x + 1).(2x - 1) dx
A. cos(x2 - x + 1) + c.
B. -2 cos(x2 - x + 1) + c.
C. -1/2 . cos(x2 - x + 1).
D. -cos(x2 - x + 1).
Xem thêm: Bản Đồ Huyện Thái Thụy, Tra Cứu Thông Tin Quy Hoạch Đến 2030
Giải
Ta có: sin(x2 - x + 1).(2x - 1)dx = sin(x2 - x + 1).(x2 - x + 1)" dx
= sin(x2 - x + 1).d(x2 - x + 1)
Đặt u = x2 - x + 1 ta được:
⇒ I = ∫sin(x2 - x + 1).(2x - 1) dx = ∫sin(x2 - x + 1).d(x2 - x + 1)
I = ∫sinudu = -cosu + C = -cos(x2 - x + 1) + c
Chọn D.
Câu 5:
Tính

A. 3ln|cosx + 2| - ln|cosx + 1| + c
B. -3ln|cosx + 2| - ln|cosx + 1| + c
C. 4ln|cosx + 2| + 2ln|cosx + 1| + c
D. 2ln|cosx + 2| - 3ln|cosx + 1| + c
Giải:

Câu 6: Tìm nguyên hàm của hàm số y = x + tan2x

Giải:
Ta có

Câu 7: Tìm nguyên hàm của hàm số y = sin7x - 7cos2x + lne

Câu 8: Nguyên hàm của hàm số
y = 2cos6x - 3sin4x có dạng F(x) = a.sin6x + b.cos4x. Tính 3a + 4b?
A. –4
B. 4
C. 2
D. -2
Giải:

Câu 9: Tìm nguyên hàm của hàm số

Giải:
Ta có:

Câu 10: Tìm nguyên hàm sau: $I = \int \frac{2dx}{\sqrt{3}sinx+cosx}$
Giải

Câu 11: Tính nguyên hàm sau: $J= \int\frac{dx}{{cos2x}- \sqrt{3}sin2x}$
Giải

Câu 12: Tìm nguyên hàm sau $I= \int\frac{dx}{3cosx + 5sinx +3}$
Giải

Câu 13: Tính nguyên hàm sau $I= \int\frac{dx}{sin^{2}x + 2sinxcosx 2cos^{2}x}$
Giải

Câu 14: Tính nguyên hàm sau $I= \int \frac{4sinx+ 3cosx}{sinx+ 2cosx}$
Giải

Bài 15: Tìm nguyên hàm $J= \int\frac{3 cosx- 2 sinx}{cosx-4sinx}dx$
Giải:
Ta tìm A,B sao cho
3 cosx- 2 sinx= A(cosx- 4sinx) + B(-sinx-4cosx
Câu 16: Tính nguyên hàm của $I=\int\frac{8cosx}{(\sqrt{3} sinx + cosx)^{2}}dx$
Giải


Câu 17: Tính nguyên hàm $I=\int\frac{8sinx+cosx+5}{(2sinx-cosx+1)}$
Giải


Câu 18: Tính nguyên hàm $I= \int cos3xcos4xdx$
Giải

Câu 19: Tính nguyên hàm sau $I=\int (sin^{3}x cos3x+cos^{3}xsin3x)dx$
Giải

Câu 20: Tính nguyên hàm sau $I= \int \frac{dx}{sinxcos^{3}x}$
Giải

Câu 21: Tính nguyên hàm $\int \frac{sin3x. sin4x}{tanx + tan2x}$
Giải

Câu 22: Tính nguyên hàm $\int \frac{dx}{sin^{3}x}$
Giải

Câu 23: Tính nguyên hàm $I= \int \frac{dx}{sinx sin(x+\frac{π}{6})}$
Giải

Câu 24: Tính nguyên hàm của
$I= \int tanx.tan(\frac{\pi}{3}-x)tan (\frac{\pi}{3}+x)dx$
Giải

Câu 25: Tính nguyên hàm của $I= \int \frac{dx}{sinx(x+\frac{\pi}{6})+cos(x+\frac{\pi}{12})}$
Giải

Để hiểu sâu hơn và thành thạo hơn trong thao tác giải các bài tập nguyên hàm cơ bản áp dụng giải bài tập nguyên hàm tích phân, các em cùng magdalenarybarikova.com theo dõi bài giảng dưới đây của thầy Thành Đức Trung nhé!
Sau bài viết này, hy vọng các em đã nắm chắc được toàn bộ lý thuyết, công thức về nguyên hàm lượng giác, từ đó vận dụng hiệu quả vào bài tập. Để có thêm nhiều kiến thức và các dạng toán hay, các em có thể truy cập ngay magdalenarybarikova.com để đăng ký tài khoản hoặc liên hệ trung tâm hỗ trợ để có được kiến thức tốt nhất chuẩn bị cho kỳ thi đại học sắp tới nhé!