*

*

Lớp 12
Hóa học 12 Sinh học 12 Lịch sử 12 Địa lí 12 GDCD 12 Công nghệ 12 Tin học 12
Lớp 11
Hóa học 11 Sinh học 11 Lịch sử 11 Địa lí 11 GDCD 11 Công nghệ 11 Tin học 11
Lớp 10
Hóa học 10 Sinh học 10 Lịch sử 10 Địa lí 10 Tin học 10 Công nghệ 10 GDCD 10 HĐ trải nghiệm, hướng nghiệp 10
Lớp 9
Hóa học 9 Sinh học 9 Lịch sử 9 Địa lí 9 GDCD 9 Công nghệ 9 Tin học 9 Âm nhạc và mỹ thuật 9
Hóa học 8 Sinh học 8 Lịch sử 8 Địa lí 8 GDCD 8 Công nghệ 8 Tin học 8 Âm nhạc và mỹ thuật 8
Lịch sử và Địa lí 7 Tin học 7 Công nghệ 7 GDCD 7 HĐ trải nghiệm, hướng nghiệp 7 Âm nhạc 7
Lịch sử và Địa lí 6 GDCD 6 Công nghệ 6 Tin học 6 HĐ trải nghiệm, hướng nghiệp 6 Âm nhạc 6 Mỹ thuật 6

Câu hỏi Cho hàm số \(y = 2x - 2\).

Bạn đang xem: Cho hàm số y 2x

a) Hàm số đã cho đồng biến hay nghịch biến trên \(\mathbb{R}\). Vì sao?

b) Vẽ đồ thị hàm số \(y = 2x - 2\).

c) Với giá trị nào của \(m\) thì đường thẳng \(y = (m - 1)x + 3\,\,\,\,\,(m \ne 1)\)song song với đường thẳng \(y = 2x - 2\).

A a) Nghịch biến

c) \(m = 3\)B a) Đồng biến

c) \(m = 3\)C a) Nghịch biến

c) \(m = 1\)D a) Đồng biến

c) \(m = 1\)
Phương pháp giải:

a) Hàm số \(y = ax + b\) đồng biến trên \(\mathbb{R}\) khi \(a > 0\).

b) Tìm các 2 điểm bất kì thuộc đồ thị hàm số. Đồ thị hàm số là đường thẳng đi qua 2 điểm đó.

c) Đường thẳng \(y = (m - 1)x + 3\,\,(m \ne 1)\) song song với đường thẳng \(y = 2x - 2\) khi hệ số góc của hai hàm số bằng nhau và hệ số tự do của 2 đường thẳng khác nhau.


Lời giải chi tiết:

a) Hàm số đã cho đồng biến trên \(\mathbb{R}\) vì \(a = 2 > 0\).

b) Vẽ đồ thị hàm số \(y = 2x - 2\)

Cho \(x = 0 \Rightarrow y = - 2\), ta được điểm \((0; - 2)\) thuộc đường thẳng \(y = 2x - 2\);

\(y = 0 \Rightarrow x = 1\), ta được điểm \((1;0)\) thuộc đường thẳng \(y = 2x - 2\).

Xem thêm: Hóa 12 Lipit - Hóa 12 Bài 2: Lipit

Vậy đồ thị hàm số \(y = 2x - 2\) là đường thẳng đi qua 2 điểm \(\left( {0; - 2} \right),\;\left( {1;\;0} \right).\;\)

Đồ thị hàm số như hình vẽ bên:

*

c) Đường thẳng \(y = (m - 1)x + 3\,\,(m \ne 1)\) song song với đường thẳng \(y = 2x - 2\)

\(\begin{array}{l} \Leftrightarrow m - 1 = 2\\ \Leftrightarrow m = 3\end{array}\) (vì \(3 \ne - 2\))

Chọn B.


*
Câu hỏi trước Câu hỏi tiếp theo
*

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay


TẢI APP ĐỂ XEM OFFLINE


Liên hệ | Chính sách

Đăng ký để nhận lời giải hay và tài liệu miễn phí

Cho phép magdalenarybarikova.com gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.